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Abstract—This study explores the feasibility of mental
workload monitoring using a single-channel mobile EEG system.
We investigated the modulation of frontal neural activity with
respect to changes in mental workload levels induced by visual-
motor tasks of varied difficulty. Using a computerized visual-
motor task similar to mirror drawing, our work demonstrated
that perceived difficulty was more dominated by the complexity
of the path to be traced than the actual time taken to complete
the task. EEG activities recorded from the forehead area at the
beginning of each trial are positively correlated with overall
perceived difficulty of the task. Results in this study suggest that
frontal EEG spectra are significantly modulated by the changes
in relative mental workload levels during a visual-motor task.
Such finding shed light on the possibility of mental workload
monitoring in daily life using a user-friendly mobile EEG system.

Keywords—Homecare and remote patient monitoring; mobile
telehealth and wireless applications; telehealth software and
systems; evaluation of mental workload.

I. INTRODUCTION

Advancement in information technology and automation in
work and home environment have brought dramatic changes to
our daily life in the last twenty years. Cognitive demand rather
than physical were required at work due to the dissemination of
computers and intelligent machines. Everyday, we live with
overwhelming information from our mobile devices and
computers, and spent excessive amount of time operating
machines or computers. Such excessive demand of mental
workload might lead to extreme consequence in personal
health. The link between mental and physical health is well
recognized [1]. While new technologies have been developing
to monitor various indices of physical health, such as heart-
rate, blood pressure and body temperature with wearable and
wireless devices [2-4], the options for mental workload
monitoring are much more limited. One of the major
challenges is the complication in measuring and quantifying
mental states objectively. Recent neuroscience research is
working on narrowing the gap with sophisticated brain imaging
techniques, including the electroencephalography (EEG) and
functional magnetic resonance imaging (fMRI). However,
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these experimental techniques require lengthy and complex set-
up. Measurements can only be conducted within a well-
controlled laboratory environment, which restricted their
everyday application in mental state monitoring.

Recently, different working prototypes of mobile EEG
system have been proposed. Most of these proposed mobile
EEG systems offer a wireless and easy-to-use solution for users
to monitor their real-time brain activities while maintaining the
high temporal resolution of signal obtained by traditional
laboratory EEG systems [5-10]. The EEG signal collected from
such mobile devices was shown to be useful in quantifying
users’ mental states [11]. In light of this, this study set out to
explore a mental workload monitoring solution with a single-
channel dry sensor mobile EEG system. Relative to the
conventional wet EEG system which comes with various
technical difficulties such as skin and electrode preparation,
users’ discomforts and lengthy preparation time, the ergonomic
design and high mobility of the dry sensor EEG system enable
us to evaluate the mental state of users during an unconstrained
natural task, in a real world setting outside the laboratory.

Mental workload level varies according to the task
difficulty and complexity and it reflects how well a person can
master a specific task [12]. Previous works have explored the
use of EEG in mental workload assessment and have reported a
relationship between mental workload and changes in EEG
band oscillations [13-15]. A study in early 1980s showed that
frontal midline theta activity appeared most frequently in
difficult blocks of a tracking task [16]. Laukka et al reported
similar finding in theta activity in a simulated driving task [17].
More recently, Kottlow et al observed the power of EEG
oscillations at the right occipitoparietal and central frontal areas
in the upper alpha frequency range was significantly lower in
experienced artists than in novices during drawing and related
tasks [18]. However, most of these studies employed multi-
channel wet EEG systems and/or event-related potential
measurements under well-controlled, structural paradigm
settings, making technology transfer in everyday environment
infeasible.



In contrast with the previous multi-channel EEG studies in
mental workload, the present study adopted a single-channel
approach. Concurrent monitoring of brain activity during a
visual-motor task was performed by a single-channel dry
sensor EEG system. Different levels of mental workload were
assessed with mirror-drawing tasks of varied difficulty levels.
The collected EEG signal was analyzed with different signal
processing techniques and the results of the analysis were
compared systematically. The results of this study have
demonstrated the feasibility of mental workload monitoring
using an user-friendly mobile EEG system, encouraging further
exploration and development work along this direction, leading
to potential telehealth and wireless applications which address
the mental health concern in our daily life.

II.  METHODS

A. Experiments

Ten volunteers (age: 26+3 years; male/female: 7/3) were
recruited in this study. All the participants have normal or
corrected-to-normal vision and have no history of neurological
or psychological disorder. Participants received informed
consent to the experimental procedure, which was approved by
the ethics committee at the City University of Hong Kong.

Participants completed 8 trials of a computerized visual-
motor task similar to mirror drawing. The mirror drawing task
was first used by Milner to assess the impact of memory
impairment on acquiring a new motor task [19]. To complete
the task successfully, participants were required to acquire a
new set of visual-motor associations (i.e., moving their hands
to the opposite direction as showed on the screen) and to
suppress the well-learned association between vision and motor
control [20]. In the present study, participants were asked to
complete a computerized task similar to mirror drawing which
is programmed with the PsychToolbox in MATLAB [21-23].
In each trial, participants were required to trace the boundary
of the presented figures as in Fig. 1 with a mouse. The program
reversed the left and right movement of the mouse. Participants
were asked to keep holding on the left key of the mouse
through the tracing and the tracing was stopped when the
participants released the key. Subjects were given 8§ practice
trials to get familiarized with the task before the data
collection. In each data collecting trial, participants were
required to complete the tracing within 5 minutes. Participants
were reminded to trace within the boundary as accurate as
possible and should go back to the boundary at the same
location where the tracing left the boundary. At the end of the
trial, participants were asked to rate the difficulty level of the
tracing using a visual analogue scale from 1 to 7, representing
“not difficult at all” to “extremely difficult”.

B. Data Collection

Two separate computers controlled the drawing task and
the EEG data collection respectively. Clock synchronization
was performed before each experiment. The drawing task was
presented to the participants with a 24” LCD monitor which
was positioned 24” from the forehead of the participants.
Behavioral data including the completion time (i.e., the time
from the first cursor movement to the last detected movement),
completion rate (i.e., the percent of drawing that the subject

completed), accuracy (i.e., the percentage of drawing the
subject made within the boundary of the presented image), and
subjective rating of task difficulty were collected together with
the actual tracing path by the MATLAB program. Single-
channel EEG data were collected from forehead area of
subjects using the NeuroSky MindWave Mobile headset at a
sampling rate of 512Hz. EEG data were transmitted wirelessly,
and stored to the data collection computer during the
experiment.

Fig. 1. The eight figures presented in the drawing task. First row: Trial 1-4
(from left to right); Second row: Trial 5 - 8 (from left to right).

C. Data Processing and Analysis

Raw EEG signals sampled at 512Hz were detrended and
those between 0.5 to 45 Hz were extracted. Wavelet-based
filter was then applied to the data to remove eye blink and
movement related artifacts [24]. Continuous EEG was
segmented into epoch based on mouse cursor movement onset
and offset time. Short-time Fourier transforms over 50%
overlapped 2s Hamming windows were computed for all pre-
processed EEG segments. Average power spectra were then
computed across segments for each trial performed by
individual subjects. Task-related spectral power variations
were investigated within eight frequency bands (Delta: 1-4Hz;
Theta: 4-8Hz; Lower Alpha: 8-11Hz; Upper Alpha: 11-14Hz;
Lower Beta: 14-25Hz; Upper Beta: 25-36Hz; Lower Gamma:
36-40Hz; Upper Gamma: 40-44Hz).

To reduce the between-subject effect, subjective difficulty
index x; was transformed to normalized rating y;; using

N
Yij = A Q)
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where x;; is the difficulty level reported by subject j in trial i;
is average of difficulty ratings reported by subject j; and o; is
standard deviation of the subjective difficulty ratings reported
by subject j. We would then explore the relationship between
EEG frequency band activities with the normalized subjective
difficulty ratings. To further explore the timely relationship
between the perceived difficulty and EEG activity, the EEG
data were segmented into 30s segments for additional
correlation analysis. Offline analyses comparing statistical
models comprised of all possible combination of prominent
EEG features selected from preceding analyses were performed
to establish an optimal model for mental workload monitoring.

III.  RESULTS

Fig. 2 illustrated the average normalized subjective
difficulty rating and the completion time of each trial. In



general, most subjects found Trial 5 to be the most difficult
task, and Trial 2 to be the easiest. Correlations of normalized
perceived difficulty rating with the path length, number of
angles in the path, and the time taken to finish each trial were
0.7714, 0.8007, and 0.6704 respectively (p < 0.001). Number
of angles in the path corresponds to the number of sharp
changes in path direction involved. No notable linear
relationship could be observed between the normalized
subjective difficulty rating and the average speed of individual
subject in completing each trial. The accuracy in tracing was
also found to be unrelated with the time and speed in current
experiments.
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Fig. 2. Average (a) normalized subjective difficulty ratings and (b) time
taken to complete each trial.

The results shown in Table 1 indicated that the average
EEG power in upper alpha band, but not the power in other
bands of EEG, of whole trial had a significant positive
correlation with the perceived difficulty of individual subject.
Drawing accuracy was also unrelated with the band powers of
EEG at the forehead area throughout whole trial.

TABLE L RELATIONSHIPS BETWEEN AVERAGE BAND POWERS AND
INDIVIDUAL OUTPUTS IN EACH TRIAL

Band Correlation with average band power
Subjective Difficulty Performance Accuracy
Delta 0.1222 -0.0056
Theta 0.1112 0.1118
Lower Alpha 0.1849 0.0518
Upper Alpha 0.2392° -0.0337
Lower Beta 0.1201 0.1441
Upper Beta 0.0491 0.1504
Lower Gamma 0.0195 0.1288
Upper Gamma 0.0360 0.1071

*Statistical significance at p < 0.05.

To investigate if EEG power spectra vary with the
experimental time, the relationship between time and the
individual band power was evaluated every 30 seconds for all
trials as shown in Table 2. Band power of frequency
components over 14Hz was higher at the beginning of the
experiments and gradually decreases in the first 30s of the
trials. No significant EEG spectral trend was observed in 90-
150s and 180-210s from the start of the trial. In short, EEG
power spectra, except theta and lower alpha activities, were

time-varying in this experiment. For example, upper alpha
activities were only related to time after 30s of trial.

TABLE II. RELATIONSHIP BETWEEN TIME AND BAND POWER
Band Power Correlation with time

First30s | 30-60s | 60-90s | 150-180s | 210-240s
Delta 0.004 0.034 0.055" | 0.019 -0.084
Theta -0.007 0.037 0.018 | -0.026 -0.029
Lower Alpha 0.029 0.029 -0.013 | -0.002 -0.017
Upper Alpha -0.025 0.069™" | 0.001 0.115 0.097
Lower Beta -0.045" | 0.060™ | 0.037 | -0.076 -0.068
Upper Beta -0.092"" | 0.035 0.083" | -0.028 -0.278"
Lower Gamma | -0.105"" | 0.045 0.015 | -0.035 -0.150
Upper Gamma | -0.108"" | 0.038 0.041 0.056 -0.104

* p <0.05; % p<0.01; ¥+ p < 0.001
Inasmuch as the EEG power spectra were time-varying,
relationship between data collected from different time
segments and overall perceived difficulty was evaluated as
shown in Table 3. Both frontal theta and alpha power
demonstrated positive relationships with the perceived task
difficulty in the first 30s, but their significance decreased with
time, especially theta power. EEG activities are indicative of
subjects’ perceived difficulty during visual-motor task only in
the first 30 seconds of each trial but not data collected
afterwards probably because of other temporal factors
introduced to the subjects or induced by themselves.

TABLE IIL RELATIONSHIP BETWEEN SUBJECTIVE DIFFICULTY AND EEG
FEATURES OF INDIVIDUALS IN DIFFERENT TIME SEGMENTS
EEG Features Correlation with subjective difficulty
First 30s Mid-30s Last 30s

Delta Power (Delta) 0.1350 0.1244 0.1243
Theta Power (Theta) 0.3002" 0.0984 0.0492
Lower Alpha Power (Alphal) 0.3208" 0.1075 0.0847
Upper Alpha Power (Alpha2) 0.3329" 0.1439 0.1790
Lower Beta Power (Betal) 0.1663 0.1259 0.1607
Upper Beta Power (Beta2) 0.1057 0.0180 0.1128
Lower Gamma Power (Gammal) | 0.0358 0.0075 0.0924
Upper Gamma Power (Gamma2) | 0.0849 0.0579 0.0993

**p < 0.01.

The average power spectral densities of EEG activities in
the first 30s are shown in Fig. 3 and Fig 4, which visualize the
power spectra of EEG data recorded in trials with normalized
subjective ratings above and below 0 respectively. The most
difficult task in the experiment induced the maximum changes
in initial EEG activities within the theta band. However, in
slightly less difficult trials, theta activities decreased
significantly. In contrast, the power spectral densities of the
significantly more difficult trials showed that their upper alpha
activities remained higher than those in the easier trials. These
results also agree with the previous statistical analysis.
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Fig. 3. Percentage changes in average power spectral density with respect to
the overall mean activities in the first 30s of the relatively more difficult trials.
Trial 5 is the most difficult trial. Trial 8 is relatively less difficult than Trial 5.
Trials 1 and 4 are indifferent to the averge subjective difficulty rating of all
trials in the experiments statistically.
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Fig. 4. Percentage changes in average power spectral density of the relatively
easier trials with respect to the overall mean activities in the first 30s. Trial 2
is the easiest trial. Trials 3 and 7 are slightly more difficult than Trial 2.
Meanwhile, the average difficult level of Trial 3 has a much higher statistical
confidence than that of Trial 7. Trial 6 is close to the average difficulty level
of all trials in the experiment.

Using results from preceding analyses as shown in Table 3,
all possible combinations of theta power, lower alpha power
and upper alpha power in the first 30s were used to build 7
linear regression models in order to predict the mental
workload level from EEG signal collected. The performances
of the models, expressed as normalized root mean squared
error (NRMSE), were assessed through a 10 fold cross-
validation. Figure 5 summarized the offline analysis results
comparing the seven models comprised of each possible
combination of theta power, lower alpha power and upper
alpha power in the first 30s. Our results indicated that
statistical model constructed using upper alpha alone
outperformed the other models in terms of NRMSE.
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Fig. 5. Offline analysis results comparing models comprised of all possible
combination of selected features (Theta, Alphal, and Alpha2 in first 30s).
Model performance were expressed as normalized root mean squared error
between the actual and predicted value, averaged across the 10 validation
groups.

IV. DISCUSSION

The finding of this study found significant relationship
between spectral features of single-channel frontal EEG and
levels of mental workload required by the task. From the
experimental results, consistent increase in EEG activities in
upper alpha band (11-14Hz) was induced by significant
increase in mental workload. The connection between frontal
EEG activities and mental workload is particularly significant
in the first 30s of each trial. It is possible that other temporal
factors happened after the first 30s contributed to this finding.
Our results also indicated that mental workload level
associated with the task was more dominated by the number of
sharp directional changes involved in the trace than the actual
time taken to complete the task.

Relationships between theta and alpha signals with
difficult and effortful tasks had been reported frequently [14,
16, 17, 25-27]. Specifically, Gevins and Smith reported an
increased frontal theta power and decreased parietal alpha
power during high-load task [26, 27]. From our results, both
frontal theta and alpha power demonstrated positive
relationships with mental workload. Such relationship in theta
was in accordance with previous findings but it was only
statistically significant at the beginning of the most difficult
trial. It is possible that the opposing finding in alpha power
between our study and works by Gevins and Smith is related
to the difference in recording positions, Fz and Pz.

Among all linear models that could be built using these
three key features (Theta, Alphal, and Alpha2) in logarithmic
scale, the model with Alpha2 extracted from the initial data
offered the lowest mean squared error in cross-validation. This
suggests that Alpha2 is a significant neural activity indicator,
which can be used to estimate the level of mental workload to
be incurred to each user based on frontal EEG collected at the
beginning of the task. The statistical model derived will assist
telehealth and wireless application developers to deliver



optimal real-life solutions by quantifying or estimating the
mental workload induced by the usage of these applications.

One of the common concerns in the studies of this area was
the possible overlap of difficulty and practice effects. In this
study, attempts were made to minimize such effect. Subjects
were asked to have 8 practice trials of the mirror drawing task
and were familiar with the task before proceeding to the
mental workload experiment. Also, the sequence of trials with
different levels of difficulty was arranged in a pseudo-random
order.

Thus far, we revealed the EEG correlate of mental
workload in a relatively simple motor task using some of the
most commonly used EEG features. Further work has to be
done to enhance the model performance by more sophisticated
signal processing and feature extraction methods. Also, we
will repeat the experiment with mental task and possibly with
additional EEG features. It is possible that a different set of
EEG features would be found due to the different nature and
neural activation pattern between motor and mental tasks.
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