How to Use the ThinkGear APl in
Xcode (Mac 0S X)

May 28, 2010

NeuroSky

Brain-Computer Interface Technologies

The NeuroSky product families consist of hardware and
software components for simple integration of this bio-
sensor technology into consumer and industrial end-applications.
All products are designed and manufactured to meet exacting
consumer specifications for quality, pricing, and feature

sets. NeuroSky sets itself apart by providing building-

block component solutions that offer friendly synergies

with related and complementary technological solutions.

Reproduction in any manner whatsoever without the written
permission of NeuroSky Inc. is strictly forbidden. Trademarks
used in this text: eSense™, ThinkGear™, MDT™, NeuroBoy™and
NeuroSky™are trademarks of NeuroSky Inc.

NO WARRANTIES: THE DOCUMENTATION PROVIDED
IS"ASIS" WITHOUT ANY EXPRESS ORIMPLIED WARRANTY
OFANY KIND INCLUDING WARRANTIES OF MERCHANTABIL-
ITY, NONINFRINGEMENT OF INTELLECTUAL PROPERTY,
INCLUDING PATENTS, COPYRIGHTS OR OTHERWISE,

OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO
EVENT SHALLNEUROSKY ORITS SUPPLIERS BE LIABLE
FORANY DAMAGES WHATSOEVER (INCLUDING, WITHOUT
LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS
INTERRUPTION, COST OF REPLACEMENT GOODS OR

LOSS OF OR DAMAGE TO INFORMATION) ARISING OUT

OF THE USE OF ORINABILITY TO USE THE DOCUMENTA-
TION PROVIDED, EVEN IF NEUROSKY HAS BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES. , SOME OF

THE ABOVE LIMITATIONS MAY NOT APPLY TO YOU
BECAUSE SOME JURISDICTIONS PROHIBIT THE EXCLUSION
ORLIMITATION OF LIABILITY FOR CONSEQUENTIAL

OR INCIDENTAL DAMAGES.

Contents

Introduction

Setting up Xcode

Importing ThinkGear Functions
Using Imported ThinkGear Functions
Conclusion

References

May 28,2010 | © 2009 NeuroSky, Inc. All Rights Reserved.

10

http://www.neurosky.com

Chapter 1

Introduction

Loadable modules (containing dynamic libraries or plugins) on Mac OS X are often packaged as
bundles. These are generally analogous to . d11 files in Windows or . so files in Linux and other
*NIX platforms, though bundles also provide a richer set of functionality, e.g. facilities for loading
non-executable assets such as localization strings or images.

Developers that want to integrate ThinkGear functionality into their OS X applications should uti-
lize the cFBundle API in the Core Foundation framework to hook into ThinkGear. bundle. This
document will describe the process of getting your Xcode project up and running with ThinkGear.

Note: The nsBundle APl in the Cocoa framework applies strictly to bundles containing Objective-C
classes. Since ThinkGear is a C-only API, discussions of NSBundle are inappropriate in this context.

May 28, 2010 | © 2009 NeuroSky, Inc. All Rights Reserved.

http://www.neurosky.com

Chapter 2

Setting up Xcode

The only requirement for loading ThinkGear. bundle is that the Core Foundation framework be
included in your project's list of external frameworks and libraries. This can be done by right-clicking
on the External Frameworks and Libraries folder in your Xcode project window.

Then, choose Add, then Existing Frameworks.... Look for the CoreFoundation. framework folder
in the directory browser, and click Add. The image below shows what your project window should
look like once the Core Foundation framework has been added.

Groups & Files
¥ [ThinkGearMacTest = A= CoreFoundation.framework L4
»[| Source
» [] Documentation

W External Frameworks and Lib
> ﬁ CoreFoundation.framewo
» [] Products
> @ Targets
b < Executables
» [® Errors and Warnings
w |, Find Results
» (1% Bookmarks
=L
- Project Symbols
» @ Implementation Files
» (3] NIB Files

Build succeeded @ Succeeded A'

Figure 2.1: Xcode project window

May 28,2010 | © 2009 NeuroSky, Inc. All Rights Reserved.

http://www.neurosky.com

Chapter 3

Importing ThinkGear Functions

At the top of your header or implementation, you should include the Core Foundation library:

#include <CoreFoundation/CoreFoundation. h>

Before importing the functions, a bundle reference (CFBundleRef) must first be created for the bun-
dle. This is constructed from a path describing the location of the bundle, which is encapsulated in a
CFURLRef object. Let's first declare these objects.

CFURLRef bundleURL;
CFBundleRef thinkGearBundle;

And now, to instantiate them:

bundleURL = CFURLCreateWithFileSystemPath(kCFAllocatorDefault,
CFSTR("ThinkGear. bundle"),
kCFURLPOSIXPathStyle,
true);

thinkGearBundle = CFBundleCreate (kCFAllocatorDefault, bundleURL);

CFBundleCreate returns NULL if the bundleURL points to an invalid bundle, so it's a good idea to
check that for validity before continuing. Note that the path above is a relative path, so the executable
will need the bundle to be located in the same directory. Apple provides documentation on different
ways of locating bundles.

We then need to declare some function pointers that reference the functions inside ThinkGear. bundle.
It is recommended to use the same naming scheme for the functions as is used in the API. A few ex-
amples are provided below for clarity. Refer to ThinkGear. h (provided in the ThinkGear SDK) for
the function prototypes.

int (*TG_GetDV) () = NULL; // TG_GetDriverVersion
int (*TG_GetNCId) () = NULL; // TG_GetNewConnectionId
int (*TG_Connect) (int, const char *, int, int) = NULL;

Finally, we'll want to create the references to the ThinkGear functions. This is done using the cF-
BundleGetFunctionPointerForName function, which takes the bundle reference as one of its pa-
rameters. This should be done for any ThinkGear functions that you plan on using in your application.

TG_GetDV = (void*) CFBundleGetFunctionPointerForName (thinkGearBundle,
CFSTR("TG_GetDriverVersion"));
TG_GetNCId = (void*)CFBundleGetFunctionPointerForName (thinkGearBundle,
CFSTR("TG_GetNewConnectionId"));
TG_Connect = (void*)CFBundleGetFunctionPointerForName (thinkGearBundle,

CFSTR("TG_Connect"));

Before using these imported functions, it is prudent to check that they were successfully imported.

May 28, 2010 | © 2009 NeuroSky, Inc. All Rights Reserved.

http://developer.apple.com/DOCUMENTATION/CoreFoundation/Conceptual/CFBundles/Tasks/locating.html
http://developer.apple.com/DOCUMENTATION/CoreFoundation/Conceptual/CFBundles/Tasks/locating.html
http://www.neurosky.com

Chapter 3 - Importing ThinkGear Functions

if (! TG_Connect)
return -1;

Before your application quits (or when you're done using the functions), you'll need to release the al-
located Core Foundation objects; namely, the CFURLRef and CFBundleRef objects. This is effectively
equivalent to an object destructor.

CFRelease (bundleURL) ;
CFRelease(thinkGearBundle) ;

May 28, 2010 | © 2009 NeuroSky, Inc. All Rights Reserved.

http://www.neurosky.com

Chapter 4

Using Imported ThinkGear

Functions

The imported functions can be used as if they were normally declared and implemented in your code,

c.g.

int retVal = TG_Connect (connectionID, "/dev/tty.MindsetMSEMl-DevB-1", 9600, 0);
printf ("TG_Connect returned: %d\n", retval);

May 28,2010 | © 2009 NeuroSky, Inc. All Rights Reserved.

http://www.neurosky.com

Chapter 5

Conclusion

By reading this document, you have familiarized yourself on how to integrate the ThinkGear library
into your OS X application. A sample Xcode project, implementing a simple command-line data
streamer for the headset, is included in the MindKit SDK.

May 28, 2010 | © 2009 NeuroSky, Inc. All Rights Reserved.

http://www.neurosky.com

Chapter 6

References

* http://developer.apple.com/ DOCUMENTATION/CoreFoundation/Conceptual/ CFBundles/ CFBundles.htm
* ThinkGear API and Reference Manual
* ThinkGear API MacOSX Example

10
May 28,2010 | © 2009 NeuroSky, Inc. All Rights Reserved.

http://developer.apple.com/DOCUMENTATION/CoreFoundation/Conceptual/CFBundles/CFBundles.html
http://www.neurosky.com

	Introduction
	Setting up Xcode
	Importing ThinkGear Functions
	Using Imported ThinkGear Functions
	Conclusion
	References

