ThinkGear Socket Protocol

June 28, 2010

NeuroSky

Brain-Computer Interface Technologies

The NeuroSky product families consist of hardware and
software components for simple integration of this bio-
sensor technology into consumer and industrial end-applications.
All products are designed and manufactured to meet exacting
consumer specifications for quality, pricing, and feature

sets. NeuroSky sets itself apart by providing building-

block component solutions that offer friendly synergies

with related and complementary technological solutions.

Reproduction in any manner whatsoever without the written
permission of NeuroSky Inc. is strictly forbidden. Trademarks
used in this text: eSense™, ThinkGear™, MDT™, NeuroBoy™and
NeuroSky™are trademarks of NeuroSky Inc.

NO WARRANTIES: THE DOCUMENTATION PROVIDED
IS"ASIS" WITHOUT ANY EXPRESS ORIMPLIED WARRANTY
OFANY KIND INCLUDING WARRANTIES OF MERCHANTABIL-
ITY, NONINFRINGEMENT OF INTELLECTUAL PROPERTY,
INCLUDING PATENTS, COPYRIGHTS OR OTHERWISE,

OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO
EVENT SHALLNEUROSKY ORITS SUPPLIERS BE LIABLE
FORANY DAMAGES WHATSOEVER (INCLUDING, WITHOUT
LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS
INTERRUPTION, COST OF REPLACEMENT GOODS OR

LOSS OF OR DAMAGE TO INFORMATION) ARISING OUT

OF THE USE OF ORINABILITY TO USE THE DOCUMENTA-
TION PROVIDED, EVEN IF NEUROSKY HAS BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES. , SOME OF

THE ABOVE LIMITATIONS MAY NOT APPLY TO YOU
BECAUSE SOME JURISDICTIONS PROHIBIT THE EXCLUSION
ORLIMITATION OF LIABILITY FOR CONSEQUENTIAL

OR INCIDENTAL DAMAGES.

Contents

Introduction 4
CONVENTIONS '« v v v v v e e e e e e e 4
Overview 5
Authorization 6
Parameters oo e e e e e e e e 6
Response 6
Configuration 7
Parameters e e e e e e e e e e e e e e e e e 7
Response e 7
Headset Data Transmission 8
Response e 8
Parsing 10
ActionScript 3 (Adobe Flashand Flex) 10

C# (NET and Mono) i i e e e e e e e e e e e e 11

3

June 28,2010 | © 2009-2010 NeuroSky, Inc. All Rights Reserved.

http://www.neurosky.com

Chapter 1

Introduction

The ThinkGear Socket Protocol (TGSP) is a JSON-based protocol for the transmission and receipt
of ThinkGear brainwave data between a client and a server. TGSP was designed to allow languages
and/or frameworks without a standard serial port API (e.g. Flash and most scripting languages) to
easily integrate brainwave-sensing functionality through socket APIs.

This document is a specification for TGSP.

Important: This document is a draft specification and may change prior to the final release of the
document.

Conventions

There will be several nomenclature conventions that will be used throughout this document.

* A server is a device or application that implements TGSP, and is responsible, amongst other
things, for responding to authorization requests and broadcasting headset data. The ThinkGear
Connector is an example of a "server".

* A client is a device or application that connects to a server.
* Headset data refers to the data returned by a headset containing a ThinkGear module.

JSON nomenclature conventions will also be used throughout this document (primarily the concept
of a JSON object), so it is best to scan the language specification to brush up.

June 28,2010 | © 2009-2010 NeuroSky, Inc. All Rights Reserved.

http://www.json.org
http://www.json.org
http://www.neurosky.com

Chapter 2

Overview

There are several primary stages in the lifetime of a TGSP connection.
1. Creation of socket connection
2. Authorization (one-time) — Authorization of the client by the server
3. Configuration of server (performed any time)
4. Receipt of headset data (repeating)
5. Termination of socket connection

These primary stages are covered in detail in the following sections.

June 28,2010 | © 2009-2010 NeuroSky, Inc. All Rights Reserved.

http://www.neurosky.com

Chapter 3

Authorization

The client must initiate an authorization request and the server must authorize the client before the
server will start transmitting any headset data.

Parameters

* appName. Required. A human-readable name identifying the client application. This can be a
maximum of 255 characters.

* appkey. Required. The key used by the client application to identify itself. This must be 40
hexadecimal characters, ideally generated using an SHA-1 digest. See the Note below.

{"appName": "Brainwave Shooters", "appKey": "9f54141b4b4c567c558d3a76chb8d715cbde03096"}

Note: The appkey is an identifier that is unique to each application, rather than each instance of an
application. It is used by the server to bypass the authorization process if a user had previously autho-
rized the requesting client. To reduce the chance of overlap with the appkey of other applications,
the appKey should be generated using an SHA-1 digest.

Response

The server will respond to the client after receiving an authorization request from the client. The
response will be sent prior to the transmission of any headset data.

e isauthorized. Tells the client whether the server has authorized access to the user's headset
data. The value is either true or false.

{"isAuthorized": true}

Note: There is no guarantee that a response to the authorization request will be transmitted by the
server in any amount of time. As such, clients should stay in an idle state until a response is received
from the server.

June 28,2010 | © 2009-2010 NeuroSky, Inc. All Rights Reserved.

http://www.neurosky.com

Chapter 4

Contiguration

A client can send commands to a server to configure such things as transmission formats or the compo-
nents of data transmitted by the server. These commands can be sent at any time after the authorization
process.

Parameters

* enableRawOutput. Optional. Whether raw sensor output should be included in the transmit-
ted data. The value of this parameter should be either true or false (default).

* format. Optional. The format in which headset data should be transmitted to the client. The
value of this parameter should be either "Binarypacket" (default) or "Json". When specifying
this value, make note of the capitalization!

{"enableRawOutput": true, "format": "Json"}

Response

No explicit response to these packets will be sent by the server — the server will simply start transmit-
ting data in the configured format.

Important: Because it may take some time for the ThinkGear Connector to re-configure itself to
transmit JSON packets, several binary packets may be prematurely transmitted to the application. As
such, an application should be able to handle the receipt of unexpected binary packets without failing
critically.

June 28,2010 | © 2009-2010 NeuroSky, Inc. All Rights Reserved.

http://www.neurosky.com

Chapter 5

Headset Data Transmission

Data transmission from the server is done using a streaming model; the client does not issue any
explicit requests to the server for brainwave data.

Because there is no mechanism in JSON to handle streaming (i.e. continuously appended) data,
TGSP delimits individual JSON objects with carriage return characters (\r), so each JSON object
will occupy its own line.

Important: Even though JSON is the preferred transmission format, the binary packet format (used
in earlier versions of TGSP) is the default format. Documentation for the binary packet format can
be found in the Binary Socket Packet Format document.

The Binary Socket Packet Format will eventually be deprecated in favor of the JSON format, so
application developers are encouraged to switch to the JSON format as soon as possible.

Response

* poorSignalLevel. A quantifier of the quality of the brainwave signal. This is an integer value
that is generally in the range of 0 to 200, with 0 indicating a good signal and 200 indicating an
off-head state.

* eSense. A container for the eSense™ attributes. These are integer values between 0 and 100,
where 0 is perceived as a lack of that attribute and 100 is an excess of that attribute.

— attention. The eSense Attention value.
— meditation. The eSense Meditation value.

* cegpower. A container for the EEG powers. These may be either integer or floating-point
values.

— delta. The "delta" band of EEG.

— theta. The "theta" band of EEG.

— lowAlpha. The "low alpha" band of EEG.
— highalpha. The "high alpha" band of EEG.
— lowBeta. The "low beta" band of EEG.

— highBeta. The "high beta" band of EEG.

— lowGamma. The "low gamma" band of EEG.

— highGamma. The "high gamma" band of EEG.

June 28,2010 | © 2009-2010 NeuroSky, Inc. All Rights Reserved.

http://www.neurosky.com

Chapter 5 — Headset Data Transmission

* rawtEeg. The raw data reading off the forehead sensor. This may be either an integer or a
floating-point value. This data is represented in its own JSON object, as in the sample below.

* blinkstrength. The strength of a detected blink. This is an integer in the range of 0-255.
This data is represented in its own JSON object, as in the sample below.

{"poorSignalLevel”: 0, "eSense": {"attention": 38, "meditation": 43}, "eegPower": {"delta":1l.15e-4, "theta":

{"rawEeg": 238}
{"rawEeg": 282}
{"blinkStrength": 100}
{"rawEeg": 239}

Note: With the exception of rawEegand blinkStrength, the headset components are transmitted
at a rate of 1Hz. rawEeg, if enabled, is transmitted at a rate no higher than 512Hz. blinkStrength
is transmitted whenever a blink is detected by the headset.

Note: The client should not expect a specific component of headset data to be present in all (or even
any) packets transmitted by the server. The client should thus maintain state between receipts of
headset data from the server. Also, the ordering of the parameters in each individual JSON object
cannot be guaranteed.

Response 9
June 28,2010 | © 2009-2010 NeuroSky, Inc. All Rights Reserved.

http://www.neurosky.com

Chapter 6

Parsing

Clients will first have to tokenize the stream using the carriage return (\r) delimiter, then parse each

token individually as a JSON object. This is demonstrated by the following pseudocode:

while there is still data in the stream
read the line
parse the line as JSON

Important: When using the JSON output format and tokenizing a packet stream using a \ r delimiter,
be careful about parsing the last token as a JSON object. The packet stream will end in a \ r character,
meaning that the tokenizer will likely return an empty string as the last token.

Also, your parsing code should be tolerant of incomplete packet strings, in the event that the stream
is parsed mid-transfer.

Once a JSON object has been extracted out of the stream, it can be parsed using any of a number of
readily-available JSON parsing libraries. An exhaustive list of JSON parsers for various languages can
be found at the JSON website, but here are the ones that NeuroSky recommends:

Language Library
ActionScript 3 (Flash/Flex) ActionScript 3 corelib
C# (NET/Mono) Jayrock

ActionScript 3 (Adobe Flash and Flex|

Once a socket has been created in your code, you'll need to configure the ThinkGear Connector to
output JSON (and optionally, raw sensor data). This is done by sending a packet that is formatted to
the Configuration packet specification. For example:

var configuration : Object = new Object();
configuration["enableRawOutput"] = true;
configuration["format"] = "Json";

socket. writeUTFBytes (JSON. encode (configuration));
When reading data from the ThinkGear Connector, you can read data directly into a String from
the socket stream. For AS3, this code would typically go into the function that was delegated as the

event listener:

var packetString : String = socket. readUTFBytes (socket. bytesAvailable);

10
June 28,2010 | © 2009-2010 NeuroSky, Inc. All Rights Reserved.

http://www.JSON.org/
http://code.google.com/p/as3corelib/
http://jayrock.berlios.de/
http://www.neurosky.com

Chapter 6 - Parsing

Then, the string should be tokenized using the carriage return (\r) as the delimiter:
var packets : Array = packetString.split(/\r/);
You can then iterate over each of the packets, parsing it into JSON:

for(var packet : String in packets) {
var data : Object = JSON. decode (packet);

// note that not all packets will contain a "rawEeg" parameter; the
// appropriate error checking should be performed.

trace(datal "rawEeg"]);
trace(datal "eSense"]["attention"]);

C# (.NET and Mono)

Typically, socket data is returned as an array of bytes in a buffer. This should be converted toa string

prior to parsing it as JSON:

byte[] buffer = new byte[8192];
networkStream Read(buffer, 0, buffer.Length);

string packetString = System Text. ASCIIEncoding. ASCII. GetString(buffer);
Next, the string should be tokenized using a carriage return (\r) as the delimiter:
string[] packets = String. Split(packetString, new char[]{"\x"});

Now that you've split the packet stream into its constituent packets, you can loop over the array and
parse each packet individually. The headset data can then be referenced directly:

foreach(string packet in packets) {
IDictionary data = (IDictionary) JsonConvert. Import (typeof (IDictionary), packet);

// note that not all packets will contain a "rawEeg" parameter; the
// appropriate error checking should be performed.
Console. WriteLine("Raw data: " + datal "rawEeg"]);

Note: By default, Visual Studio imports the system. Collections. Generic package when creating
a new class file. During compilation, however, this causes problems with the typecast used above.
Simply remove the import System Collections. Generic statement from the file header to fix
the compilation error.

C# (.NET and Mono) 11
June 28,2010 | © 2009-2010 NeuroSky, Inc. All Rights Reserved.

http://www.neurosky.com

	Introduction
	Conventions

	Overview
	Authorization
	Parameters
	Response

	Configuration
	Parameters
	Response

	Headset Data Transmission
	Response

	Parsing
	ActionScript 3 (Adobe Flash and Flex)
	C# (.NET and Mono)

