
How to Use the ThinkGear API in
Xcode (Mac OS X)
May 28, 2010



e NeuroSky product families consist of hardware and
software components for simple integration of this bio-
sensor technology into consumer and industrial end-applications.
All products are designed andmanufactured tomeet exacting
consumer speciëcations for quality, pricing, and feature
sets. NeuroSky sets itself apart by providing building-
block component solutions that offer friendly synergies
with related and complementary technological solutions.

Reproduction in anymanner whatsoever without the written
permission ofNeuroSky Inc. is strictly forbidden. Trademarks
used in this text: eSense™,inkGear™,MDT™, NeuroBoy™and
NeuroSky™are trademarks of NeuroSky Inc.

NOWARRANTIES: THEDOCUMENTATIONPROVIDED
IS "AS IS"WITHOUTANYEXPRESSOR IMPLIEDWARRANTY
OFANYKINDINCLUDINGWARRANTIESOFMERCHANTABIL-
ITY,NONINFRINGEMENTOF INTELLECTUALPROPERTY,
INCLUDINGPATENTS,COPYRIGHTSOROTHERWISE,
OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO
EVENTSHALLNEUROSKYOR ITS SUPPLIERSBELIABLE
FORANYDAMAGESWHATSOEVER (INCLUDING,WITHOUT
LIMITATION,DAMAGESFORLOSSOFPROFITS, BUSINESS
INTERRUPTION,COSTOFREPLACEMENTGOODSOR
LOSSOFORDAMAGETOINFORMATION)ARISINGOUT
OFTHEUSEOFOR INABILITYTOUSETHEDOCUMENTA-
TIONPROVIDED,EVEN IFNEUROSKYHASBEENADVISED
OF THE POSSIBILITY OF SUCHDAMAGES. , SOME OF
THE ABOVE LIMITATIONS MAY NOT APPLY TO YOU
BECAUSESOMEJURISDICTIONSPROHIBITTHEEXCLUSION
ORLIMITATIONOFLIABILITYFORCONSEQUENTIAL
OR INCIDENTAL DAMAGES.



Contents

Introduction 4

Setting up Xcode 5

Importing inkGear Functions 6

Using Imported inkGear Functions 8

Conclusion 9

References 10

May 28, 2010 | © 2009 NeuroSky, Inc. All Rights Reserved.
3

http://www.neurosky.com


Chapter 1

Introduction

Loadable modules (containing dynamic libraries or plugins) on Mac OS X are often packaged as
bundles. ese are generally analogous to .dll ëles in Windows or .so ëles in Linux and other
*NIX platforms, though bundles also provide a richer set of functionality, e.g. facilities for loading
non-executable assets such as localization strings or images.

Developers that want to integrate inkGear functionality into their OS X applications should uti-
lize the CFBundle API in the Core Foundation framework to hook into ThinkGear.bundle. is
document will describe the process of getting your Xcode project up and running with inkGear.

Note: e NSBundle API in the Cocoa framework applies strictly to bundles containing Objective-C
classes. Since inkGear is a C-only API, discussions of NSBundle are inappropriate in this context.

May 28, 2010 | © 2009 NeuroSky, Inc. All Rights Reserved.
4

http://www.neurosky.com


Chapter 2

Setting up Xcode

e only requirement for loading ThinkGear.bundle is that the Core Foundation framework be
included in your project's list of external frameworks and libraries. is can be done by right-clicking
on the External Frameworks and Libraries folder in your Xcode project window.

en, choose Add, then Existing Frameworks…. Look for the CoreFoundation.framework folder
in the directory browser, and click Add. e image below shows what your project window should
look like once the Core Foundation framework has been added.

Figure 2.1: Xcode project window

May 28, 2010 | © 2009 NeuroSky, Inc. All Rights Reserved.
5

http://www.neurosky.com


Chapter 3

Importing ThinkGear Functions

At the top of your header or implementation, you should include the Core Foundation library:

#include <CoreFoundation/CoreFoundation.h>

Before importing the functions, a bundle reference (CFBundleRef) must ërst be created for the bun-
dle. is is constructed from a path describing the location of the bundle, which is encapsulated in a
CFURLRef object. Let's ërst declare these objects.

CFURLRef bundleURL;
CFBundleRef thinkGearBundle;

And now, to instantiate them:

bundleURL = CFURLCreateWithFileSystemPath(kCFAllocatorDefault,
CFSTR("ThinkGear.bundle"),
kCFURLPOSIXPathStyle,
true);

thinkGearBundle = CFBundleCreate(kCFAllocatorDefault, bundleURL);

CFBundleCreate returns NULL if the bundleURL points to an invalid bundle, so it's a good idea to
check that for validity before continuing. Note that the path above is a relative path, so the executable
will need the bundle to be located in the same directory. Apple provides documentation on different
ways of locating bundles.

We then need to declare some function pointers that reference the functions inside ThinkGear.bundle.
It is recommended to use the same naming scheme for the functions as is used in the API. A few ex-
amples are provided below for clarity. Refer to ThinkGear.h (provided in the inkGear SDK) for
the function prototypes.

int (*TG_GetDV)() = NULL; // TG_GetDriverVersion
int (*TG_GetNCId)() = NULL; // TG_GetNewConnectionId
int (*TG_Connect)(int, const char *, int, int) = NULL;

Finally, we'll want to create the references to the inkGear functions. is is done using the CF-
BundleGetFunctionPointerForName function, which takes the bundle reference as one of its pa-
rameters. is should be done for anyinkGear functions that you plan on using in your application.

TG_GetDV = (void*)CFBundleGetFunctionPointerForName(thinkGearBundle,
CFSTR("TG_GetDriverVersion"));

TG_GetNCId = (void*)CFBundleGetFunctionPointerForName(thinkGearBundle,
CFSTR("TG_GetNewConnectionId"));

TG_Connect = (void*)CFBundleGetFunctionPointerForName(thinkGearBundle,
CFSTR("TG_Connect"));

Before using these imported functions, it is prudent to check that they were successfully imported.

May 28, 2010 | © 2009 NeuroSky, Inc. All Rights Reserved.
6

http://developer.apple.com/DOCUMENTATION/CoreFoundation/Conceptual/CFBundles/Tasks/locating.html
http://developer.apple.com/DOCUMENTATION/CoreFoundation/Conceptual/CFBundles/Tasks/locating.html
http://www.neurosky.com


Chapter 3 – Importing ThinkGear Functions

if(!TG_Connect)
return -1;

Before your application quits (or when you're done using the functions), you'll need to release the al-
located Core Foundation objects; namely, the CFURLRef and CFBundleRef objects. is is effectively
equivalent to an object destructor.

CFRelease(bundleURL);
CFRelease(thinkGearBundle);

May 28, 2010 | © 2009 NeuroSky, Inc. All Rights Reserved.
7

http://www.neurosky.com


Chapter 4

Using Imported ThinkGear
Functions
e imported functions can be used as if they were normally declared and implemented in your code,
e.g.

int retVal = TG_Connect(connectionID, "/dev/tty.MindsetMSEM1-DevB-1", 9600, 0);
printf("TG_Connect returned: %d\n", retVal);

May 28, 2010 | © 2009 NeuroSky, Inc. All Rights Reserved.
8

http://www.neurosky.com


Chapter 5

Conclusion

By reading this document, you have familiarized yourself on how to integrate the inkGear library
into your OS X application. A sample Xcode project, implementing a simple command-line data
streamer for the headset, is included in the MindKit SDK.

May 28, 2010 | © 2009 NeuroSky, Inc. All Rights Reserved.
9

http://www.neurosky.com


Chapter 6

References

• http://developer.apple.com/DOCUMENTATION/CoreFoundation/Conceptual/CFBundles/CFBundles.html

• inkGear API and Reference Manual

• inkGear API MacOSX Example

May 28, 2010 | © 2009 NeuroSky, Inc. All Rights Reserved.
10

http://developer.apple.com/DOCUMENTATION/CoreFoundation/Conceptual/CFBundles/CFBundles.html
http://www.neurosky.com

	Introduction
	Setting up Xcode
	Importing ThinkGear Functions
	Using Imported ThinkGear Functions
	Conclusion
	References

