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Chapter 1

Introduction

Loadable modules (containing dynamic libraries or plugins) on Mac OS X are often packaged as
bundles. These are generally analogous to . d11 files in Windows or . so files in Linux and other
*NIX platforms, though bundles also provide a richer set of functionality, e.g. facilities for loading
non-executable assets such as localization strings or images.

Developers that want to integrate ThinkGear functionality into their OS X applications should uti-
lize the cFBundle API in the Core Foundation framework to hook into ThinkGear. bundle. This
document will describe the process of getting your Xcode project up and running with ThinkGear.

Note: The nsBundle APl in the Cocoa framework applies strictly to bundles containing Objective-C
classes. Since ThinkGear is a C-only API, discussions of NSBundle are inappropriate in this context.
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Chapter 2

Setting up Xcode

The only requirement for loading ThinkGear. bundle is that the Core Foundation framework be
included in your project's list of external frameworks and libraries. This can be done by right-clicking
on the External Frameworks and Libraries folder in your Xcode project window.

Then, choose Add, then Existing Frameworks.... Look for the CoreFoundation. framework folder
in the directory browser, and click Add. The image below shows what your project window should
look like once the Core Foundation framework has been added.
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> @ Targets
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Figure 2.1: Xcode project window
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Chapter 3

Importing ThinkGear Functions

At the top of your header or implementation, you should include the Core Foundation library:

#include <CoreFoundation/CoreFoundation. h>

Before importing the functions, a bundle reference (CFBundleRef) must first be created for the bun-
dle. This is constructed from a path describing the location of the bundle, which is encapsulated in a
CFURLRef object. Let's first declare these objects.

CFURLRef bundleURL;
CFBundleRef thinkGearBundle;

And now, to instantiate them:

bundleURL = CFURLCreateWithFileSystemPath(kCFAllocatorDefault,
CFSTR("ThinkGear. bundle"),
kCFURLPOSIXPathStyle,
true);

thinkGearBundle = CFBundleCreate (kCFAllocatorDefault, bundleURL);

CFBundleCreate returns NULL if the bundleURL points to an invalid bundle, so it's a good idea to
check that for validity before continuing. Note that the path above is a relative path, so the executable
will need the bundle to be located in the same directory. Apple provides documentation on different
ways of locating bundles.

We then need to declare some function pointers that reference the functions inside ThinkGear. bundle.
It is recommended to use the same naming scheme for the functions as is used in the API. A few ex-
amples are provided below for clarity. Refer to ThinkGear. h (provided in the ThinkGear SDK) for
the function prototypes.

int (*TG_GetDV) () = NULL; // TG_GetDriverVersion
int (*TG_GetNCId) () = NULL; // TG_GetNewConnectionId
int (*TG_Connect) (int, const char *, int, int) = NULL;

Finally, we'll want to create the references to the ThinkGear functions. This is done using the cF-
BundleGetFunctionPointerForName function, which takes the bundle reference as one of its pa-
rameters. This should be done for any ThinkGear functions that you plan on using in your application.

TG_GetDV = (void*) CFBundleGetFunctionPointerForName (thinkGearBundle,
CFSTR("TG_GetDriverVersion"));
TG_GetNCId = (void*)CFBundleGetFunctionPointerForName (thinkGearBundle,
CFSTR("TG_GetNewConnectionId"));
TG_Connect = (void*)CFBundleGetFunctionPointerForName (thinkGearBundle,

CFSTR("TG_Connect"));

Before using these imported functions, it is prudent to check that they were successfully imported.
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Chapter 3 - Importing ThinkGear Functions

if (! TG_Connect)
return -1;

Before your application quits (or when you're done using the functions), you'll need to release the al-
located Core Foundation objects; namely, the CFURLRef and CFBundleRef objects. This is effectively
equivalent to an object destructor.

CFRelease (bundleURL) ;
CFRelease(thinkGearBundle) ;
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Chapter 4

Using Imported ThinkGear

Functions

The imported functions can be used as if they were normally declared and implemented in your code,

c.g.

int retVal = TG_Connect (connectionID, "/dev/tty.MindsetMSEMl-DevB-1", 9600, 0);
printf ("TG_Connect returned: %d\n", retval);
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Chapter 5

Conclusion

By reading this document, you have familiarized yourself on how to integrate the ThinkGear library
into your OS X application. A sample Xcode project, implementing a simple command-line data
streamer for the headset, is included in the MindKit SDK.

May 28, 2010 | © 2009 NeuroSky, Inc. All Rights Reserved.


http://www.neurosky.com

Chapter 6
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