
NeuroSky Developer - Docs - http://developer.neurosky.com/docs/

ThinkGear Connector Development Guide

Introduction

The ThinkGear Connector (TGC) is an executable that provides a daemon-like service that manages
communications with ThinkGear devices, such as the MindWave and MindWave Mobile, that are
connected to the computer. The TGC runs continuously in the background, and keeps an open socket
on the local user's computer, allowing applications to connect to it and receive information from the
connected ThinkGear devices. This means that any application in any language that can open and
read from sockets (such as Flash's ActionScript3 and other scripting languages) can connect and
receive data from a headset.

This update indicates that TGC implements the ThinkGear Socket Protocol.

Getting Started

The first step is to follow the standard end-user instructions for installing and running the TGC as
described in the ThinkGear Connector User Guide. After following the instructions there, return here
for more information about developing.

Connecting to TGC

Once the TGC is up and running on the system, the next step is to open a socket connection to it.
Refer to the socket API documentation for your application's platform/programming language for
details on how to open a socket connection.

Open a socket connection to the TGC using the following configuration:

Host address 127.0.0.1
Port 13854
Protocol TCP

http://developer.neurosky.com/docs/doku.php?id=thinkgear_connector_user_guide

Last
update:
2014/07/01
20:09

thinkgear_connector_development_guide http://developer.neurosky.com/docs/doku.php?id=thinkgear_connector_development_guide

http://developer.neurosky.com/docs/ Printed on 2014/07/01 20:17

Reading Data from TGC

Once your application has opened a socket connection to the TGC, it should be able to read
MindWave and MindWave Mobile data from the socket connection. In order to parse and understand
the data stream, please refer to the ThinkGear Socket Protocol document. Once your application is
properly parsing the data stream according to the ThinkGear Socket Protocol, it has access to all the
data coming from the ThinkGear headset! Congratulations, your application can now respond to
brainwave data and is BCI-enabled!

By default, Flash applications that are run from the user's local filesystem (e.g. as a download) are
run in a security sandbox which prevents them from accessing Flash Sockets and thus the ThinkGear
Connector.

Developers deploying downloadable Flash applications should include instructions in a user manual
showing users how to exclude folders or files from being run in the security sandbox. This has to be
done via a Flash applet on Adobe's website, which can be found here.

Connecting to ThinkGear Connector using
.NET

Prerequisites

Visual Studio 2010 or greater●

Jayrock JSON library https://code.google.com/p/jayrock/●

ThinkGear Connector (TGC)●

HelloTGC Example

This example will show the following:

Create a TCP socket connection to the ThinkGear Connector1.
Configure the the TGC to output JSON and raw EEG2.
Parse the JSON output3.

Create a new Visual C# console application

Add references to Jayrock.dll and Jayrock.Json.dll to the project and import the following namespaces:

http://developer.neurosky.com/docs/doku.php?id=thinkgear_socket_protocol
http://www.macromedia.com/support/documentation/en/flashplayer/help/settings_manager04.html
https://code.google.com/p/jayrock/

2014/07/01 20:17 3/5 Introduction

NeuroSky Developer - Docs - http://developer.neurosky.com/docs/

using System.IO;
using System.Net;
using System.Net.Sockets;
using Jayrock.Json;
using Jayrock.Json.Conversion

Create the following objects

TcpClient client;
Stream stream;
byte[] buffer = new byte[2048];
int bytesRead;
// Building command to enable JSON output from ThinkGear Connector (TGC)
byte[] myWriteBuffer = Encoding.ASCII.GetBytes(@"{""enableRawOutput"": true,
""format"": ""Json""}");

Create a TcpClient and try to connect

try {
 client = new TcpClient("127.0.0.1", 13854);
 stream = client.GetStream();

 System.Threading.Thread.Sleep(5000);
 client.Close();
} catch(SocketException se) {}

Send the configuration packet to TGC

 try {
 client = new TcpClient("127.0.0.1", 13854);
 stream = client.GetStream();

 // Sending configuration packet to TGC
 if(stream.CanWrite) {
 stream.Write(myWriteBuffer, 0, myWriteBuffer.Length);
 }

 System.Threading.Thread.Sleep(5000);
 client.Close();
 } catch(SocketException se) {}

Keep reading packets and parse the packets

 try {
 client = new TcpClient("127.0.0.1", 13854);
 stream = client.GetStream();

 // Sending configuration packet to TGC
 if(stream.CanWrite) {

http://www.google.com/search?q=new msdn.microsoft.com
http://www.google.com/search?q=new msdn.microsoft.com
http://www.google.com/search?q=new msdn.microsoft.com
http://www.google.com/search?q=new msdn.microsoft.com

Last
update:
2014/07/01
20:09

thinkgear_connector_development_guide http://developer.neurosky.com/docs/doku.php?id=thinkgear_connector_development_guide

http://developer.neurosky.com/docs/ Printed on 2014/07/01 20:17

 stream.Write(myWriteBuffer, 0, myWriteBuffer.Length);
 }

 if(stream.CanRead) {
 Console.WriteLine("reading bytes");

 // This should really be in it's own thread
 while(true) {
 bytesRead = stream.Read(buffer, 0, 2048);
 string[] packets = Encoding.UTF8.GetString(buffer, 0,
bytesRead).Split('\r');
 foreach(string s in packets) {
 ParseJSON(s.Trim());
 }
 }
 }

 System.Threading.Thread.Sleep(5000);

 client.Close();

 } catch(SocketException se) {}

Miscellany

Policy Files

When SWF files open a socket connection, SWF will typically automatically request a
crossdomain.xml file from the TGC by sending the following XML to the TGC:

<policy-file-request/>

In response, TGC will automatically write the following XML to the socket to complete the handshake:

<?xml version="1.0"?>
<!DOCTYPE cross-domain-policy SYSTEM
"http://www.macromedia.com/xml/dtds/cross-domain-policy.dtd">
<cross-domain-policy>
 <allow-access-from domain="*" to-ports="*" />
</cross-domain-policy>

This all usually occurs automatically when the socket is opened in SWF, and requires nothing special

2014/07/01 20:17 5/5 Introduction

NeuroSky Developer - Docs - http://developer.neurosky.com/docs/

on the SWF programmer's part. The SWF program can then communicate over the socket (read and
write) as normal.

If no policy file is requested by the client, then no policy file will be sent by TGC; TGC will still function
as normal in this case.

By default, the TGC allows any remotely-running SWF file to access it, though it will only listen on a
specific address and port. For details on Flash's policy file implementation, refer to this link.

From:
http://developer.neurosky.com/docs/ - NeuroSky Developer - Docs

Permanent link:
http://developer.neurosky.com/docs/doku.php?id=thinkgear_connector_development_guide

Last update: 2014/07/01 20:09

Warnings and Disclaimer of Liability

THE ALGORITHMS MUST NOT BE USED FOR ANY ILLEGAL USE, OR AS COMPONENTS IN LIFE SUPPORT OR SAFETY DEVICES
OR SYSTEMS, OR MILITARY OR NUCLEAR APPLICATIONS, OR FOR ANY OTHER APPLICATION IN WHICH THE FAILURE OF THE
ALGORITHMS COULD CREATE A SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR. YOUR USE OF THE SOFTWARE
DEVELOPMENT KIT, THE ALGORITHMS AND ANY OTHER NEUROSKY PRODUCTS OR SERVICES IS “AS-IS,” AND NEUROSKY
DOES NOT MAKE, AND HEREBY DISCLAIMS, ANY AND ALL OTHER EXPRESS AND IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, AND ANY WARRANTIES ARISING
FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL NEUROSKY BE LIABLE FOR ANY SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES, INCLUDING BUT
NOT LIMITED TO LOSS OF PROFITS OR INCOME, WHETHER OR NOT NEUROSKY HAD KNOWLEDGE, THAT SUCH DAMAGES
MIGHT BE INCURRED.

http://www.adobe.com/devnet/flashplayer/articles/fplayer9_security.html
http://developer.neurosky.com/docs/
http://developer.neurosky.com/docs/doku.php?id=thinkgear_connector_development_guide

	Introduction
	Getting Started
	Connecting to TGC
	Reading Data from TGC
	Connecting to ThinkGear Connector using .NET
	Prerequisites
	HelloTGC Example

	Miscellany
	Policy Files

